Microneedles from Fishscale-Nanocellulose Blends Using Low Temperature Mechanical Press Method

نویسندگان

  • Ololade Olatunji
  • Richard T. Olsson
  • Yvonne Perrie
چکیده

Fish scale biopolymer blended with nanocellulose crystals is used for production of microneedles applying mechanical press microfabrication and the effect of nanocellulose on microfabrication, water absorption, moisture stability and mechanical properties of the microneedles is reported. The results show that microneedles produced from the nanocellulose loaded fish scale biopolymer requires higher temperature for micromolding (80 ± 5 °C) than microneedles from only fish scale biopolymer, which were moldable at 50 ± 5 °C. The mechanical properties of the fish scale biopolymer-nanocellulose (FSBP-NC) films showed that the addition of nanocellulose (NC) resulted in lower elongation and higher tensile stress compared to fish scale biopolymer (FSBP) films. The nanocellulose also prevented dissolution of the needles and absorbed up to 300% and 234% its own weight in water (8% and 12% w/w NC/FSBP), whereas FSBP films dissolved completely within 1 min, Indicating that the FSBP-NC films can be used to produce microneedles with prolonged dissolution rate. FTIR spectrometry of the FSBP films was compared with the FSBP-NC films and the NC gels. The FTIR showed typical peaks for fish scale polymer and nanocellulose with evidence of interactions. SEM micrographs showed relatively good dispersion of NC in FSBP at both NC contents corresponding to 8% and 12% w/w NC/FSBP respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation and fracture mechanisms in nanocellulose reinforced composites

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Mindaugas Bulota Name of the doctoral dissertation Deformation and fracture mechanisms in nanocellulose reinforced composites Publisher School of Chemical Technology Unit Department of Forest Products Technology Series Aalto University publication series DOCTORAL DISSERTATIONS 109/2012 Field of research Wood Material Technolog...

متن کامل

Static and Dynamic Characterization of Cellulose Nanofibril Scaffold-Based Composites

The reinforcement potential of novel nanocellulose-based scaffolding reinforcements composed of microfibrils 5 to 50 nm in diameter and several microns in length was investigated. The cellulose nanofibril reinforcement was used to produce a three-dimensional scaffolding. A hybrid two-step approach using vacuum pressure and hot pressing was used to integrate the nanocellulose reinforcements in a...

متن کامل

Effects of Ozone and Nanocellulose Treatments on the Strength and Optical Properties of Paper Made from Chemical Mechanical Pulp

This effects of ozone and nanocellulose treatments were studied relative to the optical and strength features of chemical mechanical pulp (CMP) papers. An ozone treatment was performed at room temperature, and then nanocellulose was added. Sixty-gram handmade papers were made, and their physical, mechanical, and morphological properties were studied using X-ray diffraction (XRD) and scanning el...

متن کامل

Fabrication of conical microneedles array using photolithography

Background and Aim: Microneedle technology has led to huge changes in the field of drug delivery medicine. Using microneedles, the drug can be injected locally, painlessly, and in very low and controlled doses with high precision. Local drug delivery through the skin with microneedles has many advantages over other methods of drug delivery. In this method, the drug does not enter the gastrointe...

متن کامل

Hydrogels Prepared from Cross-Linked Nanofibrillated Cellulose

Nanocomposite hydrogels were developed by cross-linking nanofibrillated cellulose with poly(methyl vinyl ether-co-maleic acid) and polyethylene glycol. The cross-linked hydrogels showed enhanced water absorption and gel content with the addition of nanocellulose. In addition, the thermal stability, mechanical strength, and modulus increased with an increase in the amount of nanocellulose in hyd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015